skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nakata, Nori"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Seismic imaging in 3-D holds great potential for improving our understanding of ice sheet structure and dynamics. Conducting 3-D imaging in remote areas is simplified by using lightweight and logistically straightforward sources. We report results from controlled seismic source tests carried out near the West Antarctic Ice Sheet Divide investigating the characteristics of two types of surface seismic sources, Poulter shots and detonating cord, for use in both 2-D and 3-D seismic surveys on glaciers. Both source types produced strong basal P-wave and S-wave reflections and multiples recorded in three components. The Poulter shots had a higher amplitude for low frequencies (<10 Hz) and comparable amplitude at high frequencies (>50 Hz) relative to the detonating cord. Amplitudes, frequencies, speed of source set-up, and cost all suggested Poulter shots to be the preferred surface source compared to detonating cord for future 2-D and 3-D seismic surveys on glaciers. 
    more » « less
  2. Abstract Ambient seismic recordings taken at broad locations across Ross Ice Shelf and a dense array near West Antarctic Ice Sheet (WAIS) Divide, Antarctica, show pervasive temporally variable resonance peaks associated with trapped seismic waves in near-surface firn layers. These resonance peaks feature splitting on the horizontal components, here interpreted as frequency-dependent anisotropy in the firn and underlying ice due to several overlapping mechanisms driven by ice flow. Frequency peak splitting magnitudes and fast/slow axes were systematically estimated at single stations using a novel algorithm and compared with good agreement with active source anisotropy measurements at WAIS Divide determined via active sources recorded on a 1 km circular array. The approach was further applied to the broad Ross Ice Shelf (RIS) array, where anisotropy axes were directly compared with visible surface features and ice shelf flow lines. The near-surface firn, depicted by anisotropy above 30 Hz, was shown to exhibit a novel plastic stretching mechanism of anisotropy, whereby the fast direction in snow aligns with accelerating ice shelf flow. 
    more » « less
  3. Abstract Firn is the pervasive surface material across Antarctica, and its structures reflect its formation and history in response to environmental perturbations. In addition to the role of firn in thermally isolating underlying glacial ice, it defines near-surface elastic and density structure and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the surface. We investigate high-frequency seismic data collected with an array of seismographs deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019. Cross-correlations of anthropogenic noise originating from the approximately 5 km-distant camp were constructed using a 1 km-diameter circular array of 22 seismographs. We distinguish three Rayleigh (elastic surface) wave modes at frequencies up to 50 Hz that exhibit systematic spatially varying particle motion characteristics. The horizontal-to-vertical ratio for the second mode shows a spatial pattern of peak frequencies that matches particle motion transitions for both the fundamental and second Rayleigh modes. This pattern is further evident in the appearance of narrow band spectral peaks. We find that shallow lateral structural variations are consistent with these observations, and model spectral peaks as Rayleigh wave amplifications within similarly scaled shallow basin-like structures delineated by the strong velocity and density gradients typical of Antarctic firn. 
    more » « less
  4. Abstract We construct a high‐resolution shear‐wave velocity (VS) model for the uppermost 100 m using ambient noise tomography near the West Antarctic Ice Sheet Divide camp. This is achieved via joint inversion of Rayleigh wave phase velocity and H/V ratio, whose signal‐to‐noise ratios are boosted by three‐station interferometry and phase‐matched filtering, respectively. The VSshows a steep increase (0.04–0.9 km/s) in the top 5 m, with sharp interfaces at ∼8–12 m, followed by a gradual increase (1.2–1.8 km/s) between 10 and 45 m depth, and to 2 km/s at ∼65 m. The compressional‐wave velocity and empirically‐obtained density profile compares well with the results from Herglotz–Wiechert inversion of diving waves in active‐source shot experiments and ice core analysis. Our approach offers a tool to characterize high‐resolution properties of the firn and shallow ice column, which helps to infer the physical properties of deeper ice sheets, thereby contributes to improved understanding of Earth's cryosphere. 
    more » « less